Stroboscopic Averaging for the Nonlinear Schrödinger Equation
نویسندگان
چکیده
In this paper, we are concerned with an averaging procedure, – namely Stroboscopic averaging [SVM07, CMSS10] –, for highly-oscillatory evolution equations posed in a (possibly infinite dimensional) Banach space, typically partial differential equations (PDEs) in a high-frequency regime where only one frequency is present. We construct a highorder averaged system whose solution remains exponentially close to the exact one over long time intervals, possesses the same geometric properties (structure, invariants, . . . ) as compared to the original system, and is non-oscillatory. We then apply our results to the nonlinear Schrödinger equation on the d-dimensional torus T, or in R with a harmonic oscillator, for which we obtain a hierarchy of Hamiltonian averaged models. Our results are illustrated numerically on several examples borrowed from the recent literature.
منابع مشابه
Analytical Soliton Solutions Modeling of Nonlinear Schrödinger Equation with the Dual Power Law Nonlinearity
Introduction In this study, we use a newly proposed method based on the software structure of the maple, called the Khaters method, and will be introducing exponential, hyperbolic, and trigonometric solutions for one of the Schrödinger equations, called the nonlinear Schrödinger equation with the dual power law nonlinearity. Given the widespread use of the Schrödinger equation in physics and e...
متن کاملNonlinearity management in higher dimensions
In the present short communication, we revisit nonlinearity management of the timeperiodic nonlinear Schrödinger equation and the related averaging procedure. By means of rigorous estimates, we show that the averaged nonlinear Schrödinger equation does not blow up in the higher dimensional case so long as the corresponding solution remains smooth. In particular, we show that the H norm remains ...
متن کاملTopological Coherent Modes for Nonlinear Schrödinger Equation
Nonlinear Schrödinger equation, complemented by a confining potential, possesses a discrete set of stationary solutions. These are called coherent modes, since the nonlinear Schrödinger equation describes coherent states. Such modes are also named topological because the solutions corresponding to different spectral levels have principally different spatial dependences. The theory of resonant e...
متن کاملAveraging of Nonlinear Schrödinger Equations with Strong Magnetic Confinement
We consider the dynamics of nonlinear Schrödinger equations with strong constant magnetic fields. In an asymptotic scaling limit the system exhibits a purely magnetic confinement, based on the spectral properties of the Landau Hamiltonian. Using an averaging technique we derive an associated effective description via an averaged model of nonlinear Schrödinger type. In a special case this also y...
متن کاملSelection of Intermodal Conductivity Averaging Scheme for Unsaturated Flow in Homogeneous Media
The nonlinear solvers in numerical solution of water flow in variably saturated soils are prone to convergence difficulties. Many aspects can give rise to such difficulties, like very dry initial conditions, a steep pressure gradient and great variation of hydraulic conductivity occur across the wetting front during the infiltration of water. So, the averaging method applied to compute hydraul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Foundations of Computational Mathematics
دوره 15 شماره
صفحات -
تاریخ انتشار 2015